Dopamine uptake inhibitors but not dopamine releasers induce greater increases in motor behavior and extracellular dopamine in adolescent rats than in adult male rats.
نویسندگان
چکیده
Most life-long drug addiction begins during adolescence. Important structural and functional changes in brain occur during adolescence and developmental differences in forebrain dopamine systems could mediate a biologic vulnerability to drug addiction during adolescence. Studies investigating age differences in psychostimulant responses have yielded mixed results, possibly because of different mechanisms for increasing extracellular dopamine. Recent research from our laboratory suggests that adolescent dopamine systems may be most affected by selective dopamine uptake inhibitors. We investigated age-related behavioral responses to acute administration of several dopamine uptake inhibitors [methylphenidate, 1-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine (GBR12909), and nomifensine] and releasing agents [amphetamine and methylenedioxymethamphetamine (MDMA)] in adolescent and adult male rats. Methylphenidate and amphetamine effects on stimulated dopamine efflux were determined using fast-scan cyclic voltammetry in vivo. Dopamine uptake inhibitors but not dopamine releasing agents induced more locomotion and/or stereotypy in adolescent relative to adult rats. MDMA effects were greater in adults at early time points after dosing. Methylphenidate but not amphetamine induced much greater dopamine efflux in periadolescent relative to adult rats. Periadolescent male rats are particularly sensitive to psychostimulants that are DAT inhibitors but are not internalized and do not release dopamine. Immaturity of DAT and/or DAT associated signaling systems in adolescence specifically enhances behavioral and dopaminergic responses in adolescence.
منابع مشابه
The Study of Histomorphometry and Histochemistry of Liver in Adult Male and Female Rats Following Short-term and Long-term Administration of Methylphenidate
Background & Objective: Methylphenidate is one of the most common medications used for treatment of attention-deficit/hyperactivity disorder (ADHD). The administration of methylphenidate, through blocking of dopamine receptors and increment of extracellular dopamine levels, leads to escalation in central nervous system activity. Numerous studies investigated the effect of methylphenidate on bod...
متن کاملComparison of the effect of iron oxide nanoparticles and bulk on the memory and associated alterations in dopamine and serotonin levels in the hippocampus of adult male rats
Introduction: With the increasing development of nanotechnology, nanomaterials are used instead of conventional compounds. One of these nanomaterials that have many applications in the biomedical field, is iron oxide (Fe2O3) nanoparticles and there is not much research on its effects on the physiological features. So in this research, effect of iron oxide nanoparticles on short and long-term...
متن کاملEating High Fat Chow Decreases Dopamine Clearance in Adolescent and Adult Male Rats but Selectively Enhances the Locomotor Stimulating Effects of Cocaine in Adolescents
BACKGROUND Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. METHODS Dose-response curves...
متن کاملVentral Tegmental Area Microinjected-SKF38393 Increases Regular Chow Intake in 18 Hours Food Deprived Rats
Ventral tegmental area (VTA) dopamine neurons play an important role in reward mechanisms of food intake, and VTA dopamine receptors exist on the terminal of glutamatergic and GABAergic neurons and regulate GABA and glutamate release. To our knowledge, there is no evidence to show that VTA D1 dopamine receptors play a role in regular chow intake. In this paper, the effect of SKF38393, a D1 rece...
متن کاملCastration decreases extracellular, but increases intracellular, dopamine in medial preoptic area of male rats.
Dopamine (DA) is released in the medial preoptic area (MPOA) of male rats in the presence of a female, and it facilities male sexual behavior. Castration blocks the DA response to a female and the male's ability to copulate. The present experiments examined the effects of castration on (1) basal levels of extracellular DA in the MPOA, using the no net flux microdialysis technique, (2) the respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 335 1 شماره
صفحات -
تاریخ انتشار 2010